Add like
Add dislike
Add to saved papers

Optimisation of murine organotypic slice culture preparation for a novel sagittal-frontal co-culture system.

BACKGROUND: The nigrostriatal pathway is of great importance for the execution of movements, especially in the context of Parkinson's disease. In research, analysis of this pathway often requires the application of severe animal experiments. Organotypic nigrostriatal slice cultures offer a resource-saving alternative to animal experiments for research on the nigrostriatal system.

NEW METHOD: We have established a time-saving protocol for the preparation of murine sagittal nigrostriatal slice cultures by using a tissue chopper and agarose embedding instead of a vibratome. Furthermore, we developed the first murine co-culture model and the first co-culture utilising sagittal slices for modelling the nigrostriatal pathway.

RESULTS: Sagittal nigrostriatal slice cultures show good overall tissue preservation and a high number of morphologically unimpaired dopaminergic neurons in the substantia nigra. Sagittal-frontal co-culture demonstrates massive outgrowth of dopaminergic fibres from the substantia nigra into co-cultured tissue.

COMPARISON WITH EXISTING METHODS: The use of a tissue chopper instead of a vibratome allows notable time-saving during culture preparation, therefore allowing optimisation of the preparation time. Sagittal co-cultures offer the opportunity to study dopaminergic fibres in their physiological environment and in co-cultured tissue from a different animal in the same culture system.

CONCLUSION: We here present a possibility to optimise the slice culture preparation process with the simple means of using a tissue chopper and fast agarose embedding. Furthermore, our sagittal-frontal co-culture system is suitable for the observation of dopaminergic outgrowth in both co-cultured tissues.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app