JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Noninvasive evaluation of left ventricular elastance according to pressure-volume curves modeling in arterial hypertension.

End-systolic left ventricular (LV) elastance ( E es ) has been previously calculated and validated invasively using LV pressure-volume (P-V) loops. Noninvasive methods have been proposed, but clinical application remains complex. The aims of the present study were to 1 ) estimate E es according to modeling of the LV P-V curve during ejection ("ejection P-V curve" method) and validate our method with existing published LV P-V loop data and 2 ) test the clinical applicability of noninvasively detecting a difference in E es between normotensive and hypertensive subjects. On the basis of the ejection P-V curve and a linear relationship between elastance and time during ejection, we used a nonlinear least-squares method to fit the pressure waveform. We then computed the slope and intercept of time-varying elastance as well as the volume intercept (V0 ). As a validation, 22 P-V loops obtained from previous invasive studies were digitized and analyzed using the ejection P-V curve method. To test clinical applicability, ejection P-V curves were obtained from 33 hypertensive subjects and 32 normotensive subjects with carotid tonometry and real-time three-dimensional echocardiography during the same procedure. A good univariate relationship ( r 2  = 0.92, P < 0.005) and good limits of agreement were found between the invasive calculation of E es and our new proposed ejection P-V curve method. In hypertensive patients, an increase in arterial elastance ( E a ) was compensated by a parallel increase in E es without change in E a / E es In addition, the clinical reproducibility of our method was similar to that of another noninvasive method. In conclusion, E es and V0 can be estimated noninvasively from modeling of the P-V curve during ejection. This approach was found to be reproducible and sensitive enough to detect an expected increase in LV contractility in hypertensive patients. Because of its noninvasive nature, this methodology may have clinical implications in various disease states. NEW & NOTEWORTHY The use of real-time three-dimensional echocardiography-derived left ventricular volumes in conjunction with carotid tonometry was found to be reproducible and sensitive enough to detect expected differences in left ventricular elastance in arterial hypertension. Because of its noninvasive nature, this methodology may have clinical implications in various disease states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app