Add like
Add dislike
Add to saved papers

QSAR model for blood-brain barrier permeation.

BACKGROUND AND OBJECTIVE: Predicting blood-brain barrier permeability for novel compounds is an important goal for neurotherapeutics-focused drug discovery. It is impossible to determine experimentally the blood-brain barrier partitioning of all possible candidates. Consequently, alternative evaluation methods based on computational models are desirable or even necessary. The CORAL software (https://www.insilico.eu/coral) has been checked up as a tool to build up quantitative structure - activity relationships for blood-brain barrier permeation.

METHODS: The Monte Carlo technique gives possibility to build up predictive model of an endpoint by means of selection of so-called correlation weights of various molecular features. Descriptors calculated with these weights are basis for correlations "structure-endpoint".

RESULTS: The approach gives good models for three random splits into the training and validation sets. The best model characterized by the following statistics for the external validation set: the number of compounds is 41, determination coefficient is equal to 0.896, root mean squared error is equal to 0.175.

CONCLUSIONS: The suggested approach can be applied as a tool for prediction of blood-brain barrier permeation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app