Add like
Add dislike
Add to saved papers

Development and characterization of mitochondrial membrane affinity chromatography columns derived from skeletal muscle and platelets for the study of mitochondrial transmembrane proteins.

Mitochondrial membrane fragments from human platelets and monkey skeletal muscles were successfully immobilized onto immobilized artificial membrane chromatographic support for the first time, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. These columns were validated by characterization of translocator protein (TSPO), where multiple concentrations of dipyridamole were run and the binding affinities (Kd ) determined. Further, the relative ranking data of TSPO ligands was consistent with previously reported rankings for both, the platelet (MMAC-Platelet) and the skeletal muscle (MMAC-Muscle) column (dipyridamole>PK11195>protoporphyrin IX>rotenone). The functional immobilization of the F-ATPase/ATP synthase was demonstrated on MMAC-Muscle column. Online hydrolysis of ATP to ADP and synthesis of ATP from ADP were both demonstrated on the MMAC-Muscle column. Hydrolysis of ATP to ADP was inhibited by oligomycin A with an IC50 of 40.2±13.5nM (∼60% reduction in ATP hydrolysis, p<0.001), similar to previously reported values. Additionally, the Michaelis-Menten constant (Km) for ADP was found to be 1525±461μM based on the on column dose-dependent increase in ATP production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app