Add like
Add dislike
Add to saved papers

Electronic Excited State Lifetimes of Anionic Water Clusters: Dependence on Charge Solvation Motif.

An ongoing controversy about water cluster anions concerns the electron-binding motif, whether the charge center is localized at the surface or within the cluster interior. Here, mixed quantum-classical dynamics simulations have been carried out for a wide range of cluster sizes (n ≤ 1000) for (H2 O)n - and (D2 O)n - , based on a nonequilibrium first-order rate constant approach. The computed data are in good general agreement with time-resolved photoelectron imaging results (n ≤ 200). The analysis reveals that, for surface state electrons, the cluster size dependence of the excited state electronic energy gap and the magnitude of the nonadiabatic couplings have compensating influences on the excited state lifetimes: the excited state lifetime for surface states reaches a minimum for n ∼ 150 and then increases for larger clusters. It is concluded that the electron resides in a surface-localized motif in all of these measured clusters, dominating at least up to n = 200.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app