Add like
Add dislike
Add to saved papers

Inhibition of soluble epoxide hydrolase reduces portal pressure by protecting mesenteric artery myogenic responses in cirrhotic rats.

Hyperdynamic circulation contributes to the progress of portal hypertension in liver cirrhosis. We investigated the effects of soluble epoxide hydrolase (sEH) inhibition on portal pressure and the myogenic response of mesenteric arteries isolated from cirrhotic rats using the sEH inhibitor t-TUCB (trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid). Cirrhotic tissues had a higher ratio of epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs) following increased CYP2C11 expression, which may be a protective response. In comparison with controls, myogenic responses of mesenteric arteries from cirrhotic rats were attenuated at 80-140mmHg, while inhibition of sEH partly reversed the impaired myogenic constriction at 100-140mmHg and exhibited better feedback of vascular smooth muscle to pressure variation. Inhibition of sEH reduced portal pressure by decreasing endothelial synthesis of nitric oxide. An imbalance between EETs and nitric oxide may account for hyperdynamic circulation. sEH inhibitors may provide a novel approach for treating cirrhosis of the liver.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app