Add like
Add dislike
Add to saved papers

Epithelial to mesenchymal transition in Cyclosporine A-induced rat gingival overgrowth.

BACKGROUND AND OBJECTIVE: Epithelial-mesenchymal transition (EMT) has been proved to occur in drug-induced gingival overgrowth. However, the specific pathogenic mechanism remains uncertain. The aim of this study is to examine the expression of EMT markers in cyclosporine A (CsA)-induced gingival overgrowth in rat models.

MATERIAL AND METHODS: Thirty-six rats were randomly divided into two groups. The experimental group received CsA therapy subcutaneously in a daily dose of 10mg/kg, and the other group was used as a control. Six rats per group were sacrificed at 20, 40 and 60days, and the gingivae were obtained. The expression of TGF-β1, E-Cadherin, ZEB1, ZEB2, and Snail1 were examined by quantitative real time PCR (qRT-PCR), western blotting, and immunohistochemistry. In addition, a group of microRNAs associated with EMT and fibrosis were also detected in gingival tissue by qRT-PCR.

RESULTS: The mRNA and protein levels of TGF-β1, ZEB1, and ZEB2 in gingivae were significantly upregulated after 40 and 60days of CsA administration. Conversely, the levels of E-cadherin were significantly downregulated in overgrowth sample at day 40 and 60. Intense immunohistochemmical staining for TGF-β1 were observed in the samples from CsA group at day 40 and 60. Concomitantly, the densities of E-cadherin were gradually decreased in the basal layers of epithelium with time. Three members of miR-200s (miR-200a, miR-200b and miR-200c) were significantly downregulated in CsA-treated rats at 40 and 60days, while miR-9, miR-23a and miR-155 were significantly upregulated when compared with those of the control group.

CONCLUSIONS: The process of EMT in CsA-induced rat gingival overgrowth is associated with increased expression of TGF-β1, ZEB1, and ZEB2, and decreased expression of E-cadherin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app