Add like
Add dislike
Add to saved papers

An in vitro Model to Mimic Selection of Replication-Competent HIV-1 Intersubtype Recombination in Dual or Superinfected Patients.

The low frequency of HIV-1 recombinants within entire viral populations in both individual patients and culture-based infection models impedes investigation of the underlying factors contributing to either the occurrence of recombinants or the survival of recombinants once they are formed. So far, most of the related studies have no consideration of recombinants' functionality. Here, we established a functional recombinant production (FRP) system to produce pure and functional HIV-1 intersubtype Env recombinants and utilized 454 pyrosequencing to investigate the distribution of over 4000 functional and non-functional recombination breakpoints from either the FRP system or dual infection cultures. The results revealed that most of the breakpoints converged in gp41 (62%) and C1 (25.3%) domains of gp120, which has strong correlation with the similarity between the two recombining sequences. Yet, the breakpoints also appeared in C2 (5.2%) and C5 (4.6%) domains not correlated with the recombining sequence similarity. Interestingly, none of the intersubtype gp120 recombinants recombined between C1 and gp41 regions either from the FRP system or from the dual infection culture, and very few from the HIV epidemic were functional. The present study suggests that the selection of functional Env recombinants is one of the reasons for the predominance of C1 and gp41 Env recombinants in the HIV epidemic, and it provides an in vitro model to mimic the selection of replication-competent HIV-1 intersubtype recombination in dual or superinfected patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app