Add like
Add dislike
Add to saved papers

Calculation of Dose Rates at the Surface of Storage Containers for High-Level Radioactive Waste.

In several countries, the high-level radioactive waste that will be disposed of in deep geological formations has to be retrievable for a certain time. Since 2010, retrievability is required for the operation phase of a repository also in Germany. Depending on the effort and the feasibility of remote handling, a certain exposure of the involved employees to ionising radiation is caused. The estimation of the exposure requires the knowledge of the inventory of radionuclides and the radiation field around the storage containers. This paper focuses on German concepts for final storage casks for the drift emplacement in rock salt for both spent fuel rods and high-active waste (HAW) coquilles. Calculations of dose rates at the surfaces of the casks are presented. The calculations show that the gamma radiation of fission and activation products can be efficiently shielded by materials like cast iron or low-alloyed steel. Ductile cast iron, however, has a positive influence on the neutron moderation because of the high carbon content. The shielding of the neutron radiation strongly depends on the quantity and position of the polyethylene (PE) rods which are used as neutron moderator. PE has unfavourable features at elevated temperatures that can be reached in a repository for high-level waste. The simulations show that TiH2 is a promising alternative material for the shielding of neutron radiation. The current assumption that a final storage cask for HAW coquilles has the same outer dimensions as the cask for spent fuel rods will lead to unacceptable dose rates at the side wall. An increase of the diameter is necessary to provide sufficient shielding. Graphite insets in the cask interior lead to a considerably lowered dose rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app