JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Progressive Retinal Vasodilation in Patients With Type 1 Diabetes: A Longitudinal Study of Retinal Vascular Geometry.

Purpose: Retinal vessels can be used to noninvasively monitor changes in microvasculature. These changes in retinal vascular geometry (RVG) may predict chronic diabetes complications. We evaluated longitudinal RVG changes in adolescents with type 1 diabetes.

Methods: We followed 102 adolescents (baseline: 47.1% male, mean [SD] age 14.4 [1.6] years, diabetes duration 7.2 [3.1] years, HbA1c 8.1% [1.3%] [65 (9.3) mmol/mol]) over three visits, with a mean follow-up of 2.6 years. Retinal vascular geometry was measured using a standardized computer-assisted protocol from retinal photographs at each visit. Multivariable linear mixed-models and logistic regression were used to examine predictors of RVG and diabetic retinopathy.

Results: During follow-up, mean arteriolar caliber, venular caliber, and venular tortuosity increased, from 156.0 (SD, 14.5) to 164.9 (14.0) μm, 215.9 (22.5) to 230.3 (20.6) μm, and 1.096 (0.014) to 1.099 (0.016), respectively (all P < 0.005). Other RVG measurements (fractal dimension, branching angle, length to diameter ratio) remained stable. Higher than baseline HbA1c and longer diabetes duration were associated with greater venular vasodilation. Retinopathy developed at any time-point in 24% of subjects, and the highest tertile arteriolar fractal dimension was associated with cumulative incidence of retinopathy (multivariable odds ratio 3.2, 95% confidence interval 1.0-9.6; P = 0.04).

Conclusions: Higher HbA1c and longer diabetes duration in early adolescence predicts greater venular vasodilation over time. Arteriolar fractal dimension predicts subsequent retinopathy development, suggesting value as a potential biomarker for diabetic complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app