Add like
Add dislike
Add to saved papers

Linear and nonlinear rheological behavior of fat crystal networks.

Fats are ubiquitous in biological membranes, foods and many other commercial products. In these, they play essential roles in biological, nutritional and physical functions. In this review, we focus on physical mechanical functions. The rheology of fats arises from the crystal network, which displays hierarchical structural levels from the molecular to the mesoscopic. Under linear deformations, the crystal network behaves as a viscoelastic solid with elasticity dictated by particle concentration and microstructural features as represented in fractal rheo-mechanical models. Under nonlinear deformations, the crystal network yields, showing a variety of nonlinear phenomena, i.e. softening, stiffening, thixotropy. These features largely contribute to functionality or performance as essentially all processing and end-uses of fatty materials involve large nonlinear deformations. Early work on rheology of fats gave hints of their nonlinear mechanical behavior, although in many cases the measured properties were empirical. In contrast, recent efforts from our group measured fundamental rheological functions using large amplitude oscillatory shear rheology. We demonstrate the ability of this technique to discern among the bulk functionality of bakery fats (all-purpose and lamination shortenings) based on well-defined rheological signatures that also relate to the fat structure. This technique has the potential to provide similar insights on other fatty systems and novel ideas for reformulation and design of alternative lipid-structuring materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app