Add like
Add dislike
Add to saved papers

The Femtochemistry of a Ferracyclobutadiene.

The eminent role of metallacyclobutadienes as catalytic intermediates in organic synthesis and polymer chemistry is widely acknowledged. In contrast, their photochemistry is as yet entirely unexplored. Herein, the photo-induced primary processes of a ferracyclobutadiene tricarbonyl complex in solution are revealed by femtosecond mid-infrared spectroscopy. The time-resolved vibrational spectra expose an ultrafast substitution of a basal CO ligand by a solvent molecule in a consecutive dissociation-association mechanism. Following optical excitation, the system relaxes non-radiatively to the triplet ground state from which a CO is expelled. Since the triplet state is bound with respect to Fe-CO cleavage, the dissociation can only occur from vibrationally excited states. The excitation energy, vibrational relaxation, and intersystem crossing to the singlet ground state control the primary quantum yield for formation of the ferracyclic dicarbonyl-solvent product complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app