Add like
Add dislike
Add to saved papers

Mg 2+ -induced stabilization of β-galactosidase from Bacillus megaterium and its application in the galactosylation of natural products.

OBJECTIVE: To improve the stability of β-galactosidase from Bacillus megaterium YZ08 (BMG) in aqueous hydrophilic solvents and promote its application in the galactosylation of natural products.

RESULTS: The addition of 5 mM Mg2+ significantly enhanced the stability of BMG in aqueous hydrophilic solvents, and the half-lives of BMG in these solutions reached 56 min to 208 h, while they were only 7 min to 5.9 h without addition of Mg2+ . Studies on the kinetic parameters in buffer solution and 30% dimethyl sulfoxide (DMSO) indicated that the affinity of BMG to 2-nitrophenyl-β-D-galactopyranoside and its catalytic efficiency (κ cat /K m ) increased with the addition of Mg2+ . Furthermore, the addition of Mg2+ facilitated galactosylation reactions in 30% DMSO and increased product conversions by 24-41% due to the reversal of the thermodynamic equilibrium of hydrolysis.

CONCLUSION: A convenient approach was established to improve the stability of BMG in aqueous hydrophilic solvents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app