Add like
Add dislike
Add to saved papers

Photochemistry of ruthenium(ii) complexes based on 1,4,5,8-tetraazaphenanthrene and 2,2'-bipyrazine: a comprehensive experimental and theoretical study.

Polyazaaromatic ruthenium(ii) complexes have been largely studied over the last decades, particularly in the scope of the biological applications, for the development of new diagnostic and phototherapeutic agents. In this context, Ru(ii) complexes able to react with biomolecules upon excitation are of great interest. Photo-oxidizing Ru(ii) complexes based on π-deficient ligands, such as bpz (2,2'-bypyrazine) and TAP (1,4,5,8-tetraazaphenathrene), were designed to allow a photo-induced electron transfer (PET) to take place in presence of biomolecules, thanks to their highly photo-oxidizing3 MLCT state. This PET can occur from either a guanine moiety (G) or a tryptophan residue (Trp) to the excited complex and can ultimately lead to the formation of a photoadduct, i.e. the formation of a covalent bond between the Ru(ii) complex and the G or Trp moieties of a biomolecule. Here, we report the synthesis of two new photo-oxidizing Ru(ii) complexes, [Ru(TAP)2 bpz]2+ and [Ru(bpz)2 TAP]2+ , and the study of their photophysical and electrochemical properties. The influence of the structure of the ligand bpz/TAP on the photophysical and electrochemical properties of the four resulting complexes has been precisely determined thanks to the experimental and theoretical data obtained for to these new complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app