Add like
Add dislike
Add to saved papers

Residual interpolation for division of focal plane polarization image sensors.

Optics Express 2017 May 2
Division of focal plane (DoFP) polarization image sensors capture polarization properties of light at every imaging frame. However, these imaging sensors capture only partial polarization information, resulting in reduced spatial resolution output and a varying instantaneous field of overview (IFoV). Interpolation methods are used to reduce the drawbacks and recover the missing polarization information. In this paper, we propose residual interpolation as an alternative to normal interpolation for division of focal plane polarization image sensors, where the residual is the difference between an observed and a tentatively estimated pixel value. Our results validate that our proposed algorithm using residual interpolation can give state-of-the-art performance over several previously published interpolation methods, namely bilinear, bicubic, spline and gradient-based interpolation. Visual image evaluation as well as mean square error analysis is applied to test images. For an outdoor polarized image of a car, residual interpolation has less mean square error and better visual evaluation results.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app