Add like
Add dislike
Add to saved papers

Mechanism of oxidative stress p38MAPK-SGK1 signaling axis in experimental autoimmune encephalomyelitis (EAE).

Oncotarget 2017 June 28
BACKGROUND: Multiple sclerosis (MS), a complex disease associated with multifocal demyelination of the central nervous system and poorly understood etiology. It has been previously indicated that many factors, including oxidative stress and p38MAPK-SGK1 pathway, contribute to the pathogenesis of MS.

METHODS: This study, using an experimental autoimmune encephalomyelitis (EAE) model system, was aimed at investigating the molecular mechanisms determining interaction p38MAPK-SGK1 pathway and oxidative stress in MS pathogenesis. C57BL/6 mice was immunized with MOG35-55 peptide for EAE induction, which was followed by determination of the effect of treatment with classic p38 inhibitor SB203580 and antioxidant tempol on the development and progression of EAE.

RESULTS: Our experiments showed a dynamic change of immune inflammation, oxidative stress and p38MAPK-SGK1 pathway involvement in EAE demonstrating that p38MAPK-SGK1 pathway and oxidative stress contribute to the demyelination in central nerve system caused by Th17 inflammatory responses in a synergistic way. The administration of SB203580 and Tempol both markedly suppressed the progression of EAE. Furthermore, tempol showed a strong inhibiting effect to the p38MAPK-SGK1 pathway similar to SB203580 suggesting that oxidative stress exacerbates EAE via the activation of p38MAPK-SGK1 pathway.

CONCLUSION: Cumulatively, our results show that oxidative stress p38MAPK-SGK1 signaling pathway may be a central player in EAE and even in MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app