Add like
Add dislike
Add to saved papers

Dry age-related macular degeneration like pathology in aged 5XFAD mice: Ultrastructure and microarray analysis.

Oncotarget 2017 June 21
Age-related macular degeneration (AMD) is a leading cause of blindness in the elderly. The two types of AMD are: dry and wet AMD. While laser-induced choroidal neovascularization has been used extensively in the studies of wet AMD, there is no established mouse model that fully recapitulates the cardinal features of dry AMD. A lack of appropriate mouse model for dry AMD has hampered the translational research on the pathogenesis of the disease and the development of therapeutic agents. We hypothesized that 5XFAD mice, an animal model for the study of Alzheimer's disease, can be used as a mouse model for dry AMD with regard to the amyloid beta (Aβ) related pathology. In this study, the ultrastructure of the retinal pigment epithelium (RPE) of 5XFAD mice was analyzed using transmission electron microscopy. Of importance, the aged 5XFAD mice show ultrastructural changes in the RPE and Bruch's membrane (BM) that are compatible with the cardinal features of human dry AMD, including a loss of apical microvilli and basal infolding of the RPE, increased BM thickness, basal laminar and linear deposits, and accumulation of lipofuscin granules and undigested photoreceptor outer segment-laden phagosomes. In microarray-based analysis, the RPE complex of the aged 5XFAD mice shows differential gene expression profiles consistent with dry AMD in the inflammation response, immune reaction pathway, and decreased retinol metabolism. Taken together, we suggest that aged 5XFAD mice can be used as a mouse model of dry AMD to study Aβ related pathology and develop a new therapeutic approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app