Add like
Add dislike
Add to saved papers

The gene expression profile of a drug metabolism system and signal transduction pathways in the liver of mice treated with tert-butylhydroquinone or 3-(3'-tert-butyl-4'-hydroxyphenyl)propylthiosulfonate of sodium.

Tert-butylhydroquinone (tBHQ) is a highly effective phenolic antioxidant used in edible oils and fats in foods as well as in medicines and cosmetics. TBHQ has been shown to have both chemoprotective and carcinogenic effects. Furthermore, it has potential anti-inflammatory, antiatherogenic, and neuroprotective activities. TBHQ induces phase II detoxification enzymes via the Keap1/Nrf2/ARE mechanism, which contributes to its chemopreventive functions. Nonetheless, there is growing evidence that biological effects of tBHQ may be mediated by Nrf2-independent mechanisms related to various signaling cascades. Here, we studied changes in gene expression of phase I, II, and III drug metabolizing enzymes/transporters as well as protein levels and activities of cytochromes P450 (CYPs) elicited by tBHQ and its structural homolog TS-13 in the mouse liver. Next, we carried out gene expression analysis to identify signal transduction pathways modulated by the antioxidants. Mice received 100 mg/kg tBHQ or TS-13 per day or only vehicle. The liver was collected at 12 hours and after 7 days of the treatment. Protein and total RNA were extracted. Gene expression was analyzed using Mouse Drug Metabolism and Signal Transduction PathwayFinder RT2Profiler™PCR Arrays. A western blot analysis was used to measure protein levels and a fluorometric assay was employed to study activities of CYPs. Genes that were affected more than 1.5-fold by tBHQ or TS-13 treatment compared with vehicle were identified. Analysis of the gene expression data revealed changes in various genes that are important for drug metabolism, cellular defense mechanisms, inflammation, apoptosis, and cell cycle regulation. Novel target genes were identified, including xenobiotic metabolism genes encoding CYPs, phase II/III drug metabolizing enzymes/transporters. For Cyp1a2 and Cyp2b, we observed an increase in protein levels and activities during tBHQ or TS-13 treatment. Changes were found in the gene expression regulated by NFκB, androgen, retinoic acid, PI3K/AKT, Wnt, Hedgehog and other pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app