Add like
Add dislike
Add to saved papers

Subpopulation-based correspondence modelling for improved respiratory motion estimation in the presence of inter-fraction motion variations.

Correspondence modelling between low-dimensional breathing signals and internal organ motion is a prerequisite for application of advanced techniques in radiotherapy of moving targets. Patient-specific correspondence models can, for example, be built prior to treatment based on a planning 4D CT and simultaneously acquired breathing signals. Reliability of pre-treatment-built models depends, however, on the degree of patient-specific inter-fraction motion variations. This study investigates whether motion estimation accuracy in the presence of inter-fraction motion variations can be improved using correspondence models that incorporate motion information from different patients. The underlying assumption is that inter-patient motion variations resemble patient-specific inter-fraction motion variations for subpopulations of patients with similar breathing characteristics. The hypothesis is tested by integrating a sparse manifold clustering approach into a regression-based correspondence modelling framework that allows for automated identification of patient subpopulations. The evaluation is based on a total of 73 lung 4D CT data sets, including two cohorts of patients with repeat 4D CT scans (cohort 1: 14 patients; cohort 2: ten patients). The results are consistent for both cohorts: The subpopulation-based modelling approach outperforms general population modelling (models built on all data sets available) as well as pre-treatment-built models trained on only the patient-specific motion information. The results thereby support the hypothesis and illustrate the potential of subpopulation-based correspondence modelling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app