Add like
Add dislike
Add to saved papers

In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography.

A novel quasi-dry electrode prototype, based on a polymer wick structure filled with a specially designed hydrating solution is proposed for electroencephalography (EEG) applications. The new electrode does not require the use of a conventional electrolyte paste to achieve a wet, low-impedance scalp contact. When compared to standard commercial Ag/AgCl sensors, the proposed wick electrodes exhibit similar electrochemical noise and potential drift values. Lower impedances are observed when tested in human volunteers due to more effective electrode/skin contact. Furthermore, the electrodes exhibit an excellent autonomy, displaying an average interfacial impedance of 37±11 kΩ cm2 for 7 h of skin contact. After performing bipolar EEG trials in human volunteers, no substantial differences are evident in terms of shape, amplitude and spectral characteristics between signals of wick and commercial wet electrodes. Thus, the wick electrodes can be considered suitable to be used for rapid EEG applications (electrodes can be prepared without the presence of the patient) without the traditional electrolyte paste. The main advantages of these novel electrodes over the Ag/AgCl system are their low and stable impedance (obtained without conventional paste), long autonomy, comfort, lack of dirtying or damaging of the hair and because only a minimal cleaning procedure is required after the exam.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app