Add like
Add dislike
Add to saved papers

Gremlin1 Accelerates Hepatic Stellate Cell Activation Through Upregulation of TGF-Beta Expression.

Gremlin1, the antagonist of bone morphogenetic protein-7 and one of the target genes of transforming growth factor (TGF)-β signal pathway, plays an important role in embryonic development and its expression decreases along with aging. To explore the expression of gremlin1 in liver fibrosis and the causal link between gremlin1 and hepatic stellate cell (HSC) activation, we detected the expression of gremlin1 in mice with hepatic fibrosis induced by porcine serum using real time quantitative PCR (RT-qPCR) and immunohistochemical staining. The hepatic fibrosis mice were evaluated by the external feature of the liver, histology, hepatic function, collagen deposition, and the expression of fibrosis-related genes (genes COLIα2 and COLIVα2) in the liver. In the HSC-T6, western blotting was used to analyze the expression of α-smooth muscle actin (α-SMA), COL1α, and TGF-β1 in conditions of overexpression of gremlin1 or gremlin1 being knocked down by specific siRNA, respectively. The results showed that the mRNA expression of the gremlin1 gene was significantly increased consistent with increased expression of COLIα2 and COLIVα2 in the liver tissue of the hepatic fibrosis mice. Increased expression of gremlin1 coincided with the same area of the collagen deposition. Furthermore, the results also showed that the expression of α-SMA, COLIα1, and TGF-β1 was consistent with the expression of gremlin1 not only in the HSC-T6 overexpressing gremlin1 but also in the HSC-T6 that gremlin1 is knocked down by specific siRNA. The findings suggest that gremlin1 might play an important role in the progression of hepatic fibrosis and that it modulates HSC activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app