Add like
Add dislike
Add to saved papers

Prebiotic Galactooligosaccharide Metabolism by Probiotic Lactobacilli and Bifidobacteria.

Galactooligosaccharides (GOS) are bifidogenic and lactogenic prebiotics; however, GOS utilization is strain-dependent. In this study, commercially available bifidobacteria and lactobacilli probiotic strains were evaluated for growth in the presence of GOS. Several bifidobacteria and lactobacilli grew on GOS; however, the specific GOS oligomers utilized for growth differed. A subset of probiotic bifidobacteria and lactobacilli revealed three different GOS utilization profiles delineated by the degrees of polymerization (DP) of GOS: (1) utilization of 2 DP GOS, (2) utilization of ≤3 DP GOS, and (3) utilization of all DP GOS. Specifically, Lactobacillus acidophilus NCFM (LA_NCFM) was found to efficiently consume all GOS oligomers. Extracellular β-galactosidase activity in the cell-free supernatant of LA_NCFM correlated with accumulation of galactose. In a LacL-deficient LA_NCFM strain, GOS utilization was abolished. This is the first report of LacL's role in GOS metabolism in LA_NCFM. In vitro GOS utilization should be considered when GOS are delivered with probiotic bifidobacteria and lactobacilli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app