Add like
Add dislike
Add to saved papers

Differential surface density and modulatory effects of presynaptic GABA B receptors in hippocampal cholecystokinin and parvalbumin basket cells.

The perisomatic domain of cortical neurons is under the control of two major GABAergic inhibitory interneuron types: regular-spiking cholecystokinin (CCK) basket cells (BCs) and fast-spiking parvalbumin (PV) BCs. CCK and PV BCs are different not only in their intrinsic physiological, anatomical and molecular characteristics, but also in their presynaptic modulation of their synaptic output. Most GABAergic terminals are known to contain GABAB receptors (GABAB R), but their role in presynaptic inhibition and surface expression have not been comparatively characterized in the two BC types. To address this, we performed whole-cell recordings from CCK and PV BCs and postsynaptic pyramidal cells (PCs), as well as freeze-fracture replica-based quantitative immunogold electron microscopy of their synapses in the rat hippocampal CA1 area. Our results demonstrate that while both CCK and PV BCs contain functional presynaptic GABAB Rs, their modulatory effects and relative abundance are markedly different at these two synapses: GABA release is dramatically inhibited by the agonist baclofen at CCK BC synapses, whereas a moderate reduction in inhibitory transmission is observed at PV BC synapses. Furthermore, GABAB R activation has divergent effects on synaptic dynamics: paired-pulse depression (PPD) is enhanced at CCK BC synapses, but abolished at PV BC synapses. Consistent with the quantitative differences in presynaptic inhibition, virtually all CCK BC terminals were found to contain GABAB Rs at high densities, but only 40% of PV BC axon terminals contain GABAB Rs at detectable levels. These findings add to an increasing list of differences between these two interneuron types, with implications for their network functions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app