JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Potentiation of receptor responses induced by prolonged binding of Gα 13 and leukemia-associated RhoGEF.

Diverse cellular functions are controlled by RhoA-GTPases, which are activated by trimeric G proteins via RhoGEFs, among others. In this study, we focused on the signaling from GPCRs to RhoA via Gα13 and leukemia-associated RhoGEF (LARG). The activation of Gα13 was elucidated in living cells with high temporal and spatial resolution by means of FRET. The inactivation after agonist withdrawal occurred in the same range ( t 1/2 = 25.3 ± 2.2 s; mean ± sem; n = 22) as described for other Gα proteins. The interaction of Gα13 and LARG and the thereby-induced LARG translocation to the plasma membrane were at least 1 order of magnitude more stable after agonist withdrawal, exceeding Gα13 deactivation in the absence of LARG several fold. Consequently, we observed an almost 100-fold higher agonist sensitivity of the Gα13 LARG interaction compared to the Gα13 activation in the absence of LARG.-Bodmann, E.-L., Krett, A.-L., Bünemann, M. Potentiation of receptor responses induced by prolonged binding of Gα13 and leukemia-associated RhoGEF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app