Add like
Add dislike
Add to saved papers

Analysis of Nonlinear Pharmacokinetics of a Highly Albumin-Bound Compound: Contribution of Albumin-Mediated Hepatic Uptake Mechanism.

The cause of nonlinear pharmacokinetics (PK) (more than dose-proportional increase in exposure) of a urea derivative under development (compound A: anionic compound [pKa: 4.4]; LogP: 6.5; and plasma protein binding: 99.95%) observed in a clinical trial was investigated. Compound A was metabolized by CYP3A4, UGT1A1, and UGT1A3 with unbound Km of 3.3-17.8 μmol/L. OATP1B3-mediated uptake of compound A determined in the presence of human serum albumin (HSA) showed that unbound Km and Vmax decreased with increased HSA concentration. A greater decrease in unbound Km than in Vmax resulted in increased uptake clearance (Vmax /unbound Km ) with increased HSA concentration, the so-called albumin-mediated uptake. At 2% HSA concentration, unbound Km was 0.00657 μmol/L. A physiologically based PK model assuming saturable hepatic uptake nearly replicated clinical PK of compound A. Unbound Km for hepatic uptake estimated from the model was 0.000767 μmol/L, lower than the in vitro unbound Km at 2% HSA concentration, whereas decreased Km with increased concentration of HSA in vitro indicated lower Km at physiological HSA concentration (4%-5%). In addition, unbound Km values for metabolizing enzymes were much higher than unbound Km for OATP1B3, indicating that the nonlinear PK of compound A is primarily attributed to saturated OATP1B3-mediated hepatic uptake of compound A.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app