Add like
Add dislike
Add to saved papers

Morphology-based non-invasive quantitative prediction of the differentiation status of neural stem cells.

Neural stem cells (NSCs) are multipotent and are considered ideal source for regenerating damaged neural cells for neurological disorders. During culture of NSCs, both the measurement and the evaluation of their differentiation potential are important to maintain stable quality-assured NSCs for regenerative treatments since the rate of differentiation into certain lineages from NSCs is still not fully controllable. However, conventional cell evaluation techniques using biological molecular are still invasive, costly, and time-consuming. Therefore, a non-invasive, low-cost, and rapid cell evaluation method is required to expand the possibilities of regenerative therapy, especially in the facilities that produce cells for therapy. To address these such technological limitations in non-invasive cell evaluation, we propose the efficacy of computer-aided morphology-based prediction of potentials of stem cells by using multiple and time-course morphological parameters from phase-contrast microscopic images combined with experimentally determined differentiation potentials. In this work, we quantified the morphological parameters of NSCs during three types of differentiation culture and investigated two applications with NSCs: (i) evaluation of their differentiation type and (ii) early prediction of neural differentiation rate. Our data demonstrate that it is possible to non-invasively evaluate neural differentiation types and quantitatively predict future differentiation rates by using morphological information from the first 4 days. Our findings indicate the potential application of morphology-based non-invasive evaluation for optimizing effective differentiation protocols, screening of compounds to mediate NSC differentiation, and quality maintenance of regenerative medicine products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app