Add like
Add dislike
Add to saved papers

Sound transmission loss characteristics of sandwich panels with a truss lattice core.

Sandwich panels are extensively used in constructional, naval, and aerospace structures due to the high stiffness and strength-to-weight ratios. In contrast, the sound transmission properties are adversely influenced by the low effective mass. Phase velocity matching of structural waves propagating within the panel and the incident pressure waves from the fluid medium leads to coincidence effects resulting in reduced impedance and high sound transmission. Truss-like lattice cores with porous microarchitecture and reduced inter panel connectivity offer the potential to satisfy the conflicting structural and vibroacoustic response requirements. This study combines Bloch-wave analysis and the finite element method to understand wave propagation and hence sound transmission in sandwich panels with a truss lattice core. Three dimensional coupled fluid-structure finite element simulations are conducted to compare the performance of a representative set of lattice core topologies. Potential advantages of sandwich structures with a lattice core are identified. The significance of partial band gaps is evident in the sound transmission loss characteristics of the panels studied. This work demonstrates that, even without optimization, significant enhancements in sound transmission loss performance can be achieved in truss lattice core sandwich panels compared to a traditional sandwich panel employing a honeycomb core under constant mass constraint.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app