Add like
Add dislike
Add to saved papers

A Long-Range Acting Dehydratase Domain as the Missing Link for C17-Dehydration in Iso-Migrastatin Biosynthesis.

Angewandte Chemie 2017 June 13
The dehydratase domains (DHs) of the iso-migrastatin (iso-MGS) polyketide synthase (PKS) were investigated by systematic inactivation of the DHs in module-6, -9, -10 of MgsF (i.e., DH6, DH9, DH10) and module-11 of MgsG (i.e., DH11) in vivo, followed by structural characterization of the metabolites accumulated by the mutants, and biochemical characterization of DH10 in vitro, using polyketide substrate mimics with varying chain lengths. These studies allowed us to assign the functions for all four DHs, identifying DH10 as the dedicated dehydratase that catalyzes the dehydration of the C17 hydroxy group during iso-MGS biosynthesis. In contrast to canonical DHs that catalyze dehydration of the β-hydroxy groups of the nascent polyketide intermediates, DH10 acts in a long-range manner that is unprecedented for type I PKSs, a novel dehydration mechanism that could be exploited for polyketide structural diversity by combinatorial biosynthesis and synthetic biology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app