Add like
Add dislike
Add to saved papers

Different oxidative status and expression of calcium channel components in stress-induced dysfunctional chicken muscle.

The objective of this study was to assess the effects of transport stress at high ambient temperatures on the oxidation status and the expression of essential elements responsible for the Ca transport (sarco- (endo-) plasmic reticulum Ca-ATPase (SERCA1) and the ryanodine receptor (RyR) in (PM) muscles of broilers. Briefly, Arbor Acres broiler chickens ( = 112) were randomly categorized into 2 treatments: unstressed control (C) and 0.5 h transport (T). Each treatment consisted of 8 replicates of 7 birds each. Birds were transported according to a designed protocol. PM muscle samples in T group were collected and classified as normal (T-NOR) or pale, soft, and exudative-like (T-PSE) using meat quality parameters. The results indicated that production of corticosterone (CORT) and reactive oxygen species (ROS) increased significantly after transportation ( < 0.05). Thiobarbituric acid reactive substance values and carbonyl contents increased significantly in the T group ( < 0.05). Moreover, the extent of lipid peroxidation and protein oxidation was more severe in the T-PSE group compared to the T-NOR group ( < 0.05). The mRNA and protein expression of SERCA1 and αRyR increased in the T-NOR group but decreased significantly in the T-PSE group compared to the CON group ( < 0.05). The mRNA expression of βRyR was found to be enhanced in the T-NOR group compared to the CON group, whereas there was no difference in the T-PSE group ( < 0.05). The results indicate that short-distance transport of broilers affects their physiological responses and biochemical changes which may lead to different oxidative states and, importantly, to different expressions of SERCA and RyR. These induced changes in abnormal sarcoplasmic Ca homeostasis have significant implications for the development of PSE-like meat.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app