Add like
Add dislike
Add to saved papers

Pulmonary hyperinflation due to gas trapping and pulmonary artery size: The MESA COPD Study.

BACKGROUND: Pulmonary hypertension is associated with increased morbidity and mortality in chronic obstructive pulmonary disease (COPD). Since pulmonary artery (PA) size increases in pulmonary hypertension, we measured PA cross-sectional area using magnetic resonance imaging (MRI) to test the hypothesis that pulmonary hyperinflation due to gas trapping is associated with PA cross-sectional area in COPD.

METHODS: The MESA COPD Study recruited participants with COPD and controls from two population-based cohort studies ages 50-79 years with 10 or more pack-years and free of clinical cardiovascular disease. Body plethysmography was performed according to standard criteria. Cardiac MRI was performed at functional residual capacity to measure the cross-sectional area of the main PA. Percent emphysema was defined as the percentage of lung voxels less than -950 Hounsfield units as assessed via x-ray computed tomography. Analyses were adjusted for age, gender, height, weight, race-ethnicity, the forced expiratory volume in one second, smoking status, pack-years, lung function, oxygen saturation, blood pressure, left ventricular ejection fraction and percent emphysema.

RESULTS: Among 106 participants, mean residual volume was 1.98±0.71 L and the mean PA cross-sectional area was 7.23±1.72 cm2. A one standard deviation increase in residual volume was independently associated with an increase in main PA cross-sectional area of 0.55 cm2 (95% CI 0.18 to 0.92; p = 0.003). In contrast, there was no evidence for an association with percent emphysema or total lung capacity.

CONCLUSION: Increased residual volume was associated with a larger PA in COPD, suggesting that gas trapping may contribute to pulmonary hypertension in COPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app