Add like
Add dislike
Add to saved papers

Super-Resolution Fluorescence Imaging of Spatial Organization of Proteins and Lipids in Natural Rubber.

Biomacromolecules 2017 June 13
Natural rubber (NR) with proteins and lipids has superior mechanical properties to its synthetic counterpart, polyisoprene rubber. However, it is a challenge to unravel the morphology of proteins and lipids. Here we used two-color stochastic optical reconstruction microscopy (STORM) to directly visualize the spatial organization of proteins and lipids in NR. We found that the proteins and lipids form an interdispersed stabilizing layer on the surface of NR latex particles. After drying, the proteins and lipids form aggregates of up to 300 nm in diameter. The aggregates physically interact with the terminal groups of polyisoprene chains, leading to the formation of a network, which contributes to the high elasticity and mechanical property of NR. If we remove proteins in NR, the large phospholipid aggregates disintegrate into small ones. However, it does not decompose the network but rather reduces the effective cross-linking density, thus the deproteinized NR is still elastic-like with decreased mechanical property. Removing both proteins and lipids wholly decomposes the network, thus, results in a liquid-like behavior of the rubber. The STORM measurements in this paper enable more insight into the structure-property relationship of NR, which also shows a great potential of STORM in studying the fine structure of polymeric materials and nanocomposites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app