JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Holographic aperture ladar with range compression.

Simultaneous range compression and aperture synthesis is experimentally demonstrated with a stepped linear frequency modulated waveform and holographic aperture ladar. The resultant three-dimensional (3D) data has high resolution in the aperture synthesis dimension and is recorded using a conventional low bandwidth focal plane array. Individual cross-range field segments are coherently combined using data driven registration and phase correction methods allowing range compression to be performed without the benefit of a coherent waveform. Furthermore, we demonstrate a synergistically enhanced ability to discriminate image objects due to the coaction of range compression and aperture synthesis. We show that two objects can be precisely located in 3D space, despite being unresolved in two directions, due to resolution gains in both the range and azimuth cross-range dimensions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app