Add like
Add dislike
Add to saved papers

Computational Parametric Analysis of the Mechanical Response of Structurally Varying Pacinian Corpuscles.

The Pacinian corpuscle (PC) is a cutaneous mechanoreceptor that senses low-amplitude, high-frequency vibrations. The PC contains a nerve fiber surrounded by alternating layers of solid lamellae and interlamellar fluid, and this structure is hypothesized to contribute to the PC's role as a band-pass filter for vibrations. In this study, we sought to evaluate the relationship between the PC's material and geometric parameters and its response to vibration. We used a spherical finite element mechanical model based on shell theory and lubrication theory to model the PC's outer core. Specifically, we analyzed the effect of the following structural properties on the PC's frequency sensitivity: lamellar modulus (E), lamellar thickness (h), fluid viscosity (μ), PC outer radius (Ro), and number of lamellae (N). The frequency of peak strain amplification (henceforth "peak frequency") and frequency range over which strain amplification occurred (henceforth "bandwidth") increased with lamellar modulus or lamellar thickness and decreased with an increase in fluid viscosity or radius. All five structural parameters were combined into expressions for the relationship between the parameters and peak frequency, ωpeak=1.605×10-6N3.475(Eh/μRo), or bandwidth, B=1.747×10-6N3.951(Eh/μRo). Although further work is needed to understand how mechanical variability contributes to functional variability in PCs and how factors such as PC eccentricity also affect PC behavior, this study provides two simple expressions that can be used to predict the impact of structural or material changes with aging or disease on the frequency response of the PC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app