Add like
Add dislike
Add to saved papers

Exploring the structure of fucosylated chondroitin sulfate through bottom-up nuclear magnetic resonance and electrospray ionization-high-resolution mass spectrometry approaches.

Glycobiology 2017 July 2
Fucosylated chondroitin sulfate (FCS) from sea cucumbers is composed of a chondroitin sulfate (CS) central core and branches of sulfated fucose. The structure of this complex glycosaminoglycan is usually investigated via nuclear magnetic resonance (NMR) analyses of the intact molecule, ergo through a top-down approach, which often yield spectra with intricate sets of signals. Here we employed a bottom-up approach to analyze the FCSs from the sea cucumbers Isostichopus badionotus and Ludwigothurea grisea from their basic constituents, viz. CS cores and sulfated fucose branches, obtained via systematic fragmentation through mild acid hydrolysis. Oligosaccharides derived from the central CS core were analyzed via NMR spectroscopy and the disaccharides produced using chondroitin sulfate lyase via SAX-HPLC. The CS cores from the two species were similar, showing only slight differences in the proportions of 4- or 6-monosulfated and 4,6-disulfated β-d-GalNAc. Sulfated fucose units released from the FCSs were analyzed via NMR and ESI-HRMS spectroscopies. The fucose units from each species presented extensive qualitative differences, but quantitative assessments of these units were hindered, mostly because of their extensive desulfation during the hydrolysis. The bottom-up analysis performed here has proved useful to explore the structure of FCS through a sum-of-the-parts approach in a qualitative manner. We further demonstrate that under specific acidification conditions particular fucose branches can be removed preferentially from FCS. Preparation of derivatives enriched with particular fucose branches could be useful for studies on "structure vs. biological function" of FCS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app