JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Photostable Ratiometric Pdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid.

Developing probes for the detection of reactive oxygen species (ROS), a hallmark of many pathophysiological process, is imperative to both understanding the precise roles of ROS in many life-threatening diseases and optimizing therapeutic interventions. We herein report an all-in-one fluorescent semiconducting polymer based far-red to near-infrared (NIR) Pdot nanoprobe for the ratiometric detection of hypochlorous acid (HOCl). The fabrication takes the advantage of flexible polymer design by incorporating target-sensitive and target-inert fluorophores into a single conjugated polymer to avoid leakage or differential photobleaching problems existed in other nanoprobes. The obtained nanoprobe has improved performance in HOCl sensing, such as high brightness, ideal far-red to NIR optical window, excellent photostability, self-referenced ratiometric response, fast response, and high selectivity. The dual-emission property allows the sensitive imaging of HOCl fluctuations produced in living macrophage cells and peritonitis of living mice with high contrast. This study not only provides a powerful and promising nanoprobe to be potentially used in the investigations of in situ HOCl status of diseases in living systems but also puts forward the design strategy of a new category of ratiometric fluorescent probes facilitating precise and reliable measurement in biological systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app