Add like
Add dislike
Add to saved papers

2D IR Correlation Spectroscopy in the Determination of Aggregation and Stability of KH Domain GXXG Loop Peptide in the Presence and Absence of Trifluoroacetate.

Trifluoroacetate (TFA) is a strong anion byproduct of solid-phase peptide synthesis. Fourier transform infrared (FT-IR) spectroscopy can be used to ascertain the presence of this excipient in peptide samples for quality assessment. TFA absorbs as a strong sharp peak (1675 cm(-1)) within the amide I' band of the spectral region. A peptide sample and the TFA excipient can be studied simultaneously by FT-IR and 2D IR correlation spectroscopies. In addition, these techniques are able to determine the effect of TFA on the stability of the peptide. Herein, we describe the spectroscopic characterization of the GXXG loop peptide (GXXGlp), which is present in KH domain containing proteins. The sequence of the Homo sapiens Krr1 GXXGlp is evolutionarily conserved (165KRRQRLIGPKGSTLKALELLTNCY189) and has been associated with ssDNA interaction and ribosome biogenesis. Our goal was to determine the structural elements present in this peptide and evaluate whether TFA affects the stability of GXXGlp during thermal stress. We observed differences in the molecular behavior of the synthetic peptide in the presence and absence of TFA at various peptide concentrations. Finally, 2D IR correlation spectroscopy was used for the determination of the unfolding process, mechanism and extent of peptide aggregation, and the effect of TFA on the stability of the peptide. This spectroscopic method can be applied to the characterization of any synthetic peptide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app