JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Structure of RNA Stem Loop B from the Picornavirus Replication Platform.

Biochemistry 2017 May 24
The presumptive RNA cloverleaf at the start of the 5'-untranslated region of the picornavirus genome is an essential element in replication. Stem loop B (SLB) of the cloverleaf is a recognition site for the host polyC-binding protein, which initiates a switch from translation to replication. Here we present the solution structure of human rhinovirus isotype 14 SLB using nuclear magnetic resonance spectroscopy. SLB adopts a predominantly A-form helical structure. The stem contains five Watson-Crick base pairs and one wobble base pair and is capped by an eight-nucleotide loop. The wobble base pair introduces perturbations into the helical parameters but does not appear to introduce flexibility. However, the helix major groove appears to be accessible. Flexibility is seen throughout the loop and in the terminal nucleotides. The pyrimidine-rich region of the loop, the apparent recognition site for the polyC-binding protein, is the most disordered region of the structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app