Add like
Add dislike
Add to saved papers

The diversification of begomovirus populations is predominantly driven by mutational dynamics.

Virus Evolution 2017 January
Begomoviruses (single-stranded DNA plant viruses) are responsible for serious agricultural threats. Begomovirus populations exhibit a high degree of within-host genetic variation and evolve as quickly as RNA viruses. Although the recombination-prone nature of begomoviruses has been extensively demonstrated, the relative contribution of recombination and mutation to the genetic variation of begomovirus populations has not been assessed. We estimated the genetic variability of begomovirus datasets from around the world. An uneven distribution of genetic variation across the length of the cp and rep genes due to recombination was evident from our analyses. To estimate the relative contributions of recombination and mutation to the genetic variability of begomoviruses, we mapped all substitutions over maximum likelihood trees and counted the number of substitutions on branches which were associated with recombination (ηr) and mutation (ημ). In addition, we also estimated the per generation relative rates of both evolutionary mechanisms (r/μ) to express how frequently begomovirus genomes are affected by recombination relative to mutation. We observed that the composition of genetic variation in all begomovirus datasets was dominated by mutation. Additionally, the low correlation between the estimates indicated that the relative contributions of recombination and mutation are not necessarily a function of their relative rates. Our results show that, although a considerable fraction of the genetic variation levels could be assigned to recombination, it was always lower than that due to mutation, indicating that the diversification of begomovirus populations is predominantly driven by mutational dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app