JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

DJ-1/PARK7: A New Therapeutic Target for Neurodegenerative Disorders.

DJ-1, encoded in a causative gene of familial Parkinson's disease (PARK7), has multiple functions: it works as an antioxidant, in transcriptional regulation, as a molecular chaperone and in protein degradation. Three types of pathogenic mutants of DJ-1 (M26I, D149A and L166P) have been reported to disrupt proper structures and lead to a loss of function. DJ-1 receives oxidation at the cysteine residue, and the degree of oxidation at the C106 residue determines DJ-1 activity. In this decade, DJ-1 has been reported to suppress the progression of various neurodegenerative disorders in animal models. The administration of recombinant wild-type DJ-1 protein suppresses the neuronal loss associated with both Parkinson's disease and ischemic stroke in rats. Furthermore, in studies focused on DJ-1 as the therapeutic target, compounds that have the capacity of binding to DJ-1 at the C106 residue have been reported to exert therapeutic effects on various neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease and ischemic stroke. DJ-1 and DJ-1-targeting molecules/compounds will be useful therapeutic targets for various neurodegenerative disorders due to their various functions such as antioxidant capacity, chaperone function and as a proteolytic pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app