Add like
Add dislike
Add to saved papers

The Characterization of Drug-to-Antibody Ratio and Isoforms of ADCs Using LC and MS Technologies.

Hydrophobic interaction chromatography (HIC) and MS are leading techniques for the characterization of the critical quality attributes (CQA) of antibody-drug conjugates (ADCs). This includes the average drug-to-antibody ratio (DAR) and drug loading distribution. A workflow that effectively utilizes the synergy between chromatography and detection technologies has been developed and was assessed using cysteine-conjugated ADCs. The DAR of low, moderate and high drug-loaded ADC samples were calculated from the chromatographic peak areas using LC(HIC)/UV or the deconvoluted mass spectra using native LC(SEC)/MS. The results of DAR by both technologies produced comparable results. In addition, the 2D-LC/MS system has been evaluated in combination with HIC and reversed-phase chromatography for structural identification. Individual peaks from the 1st dimension of the HIC separation were isolated online and re-directed to the 2nd dimension reversed-phase column. ADC was detected as the sub-units by MS and the conjugation site was identified via a middle down approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app