Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

NF-κB dependent up-regulation of TRPC6 by Aβ in BV-2 microglia cells increases COX-2 expression and contributes to hippocampus neuron damage.

The deposition of amyloid β-protein (Aβ) has been involved in neurodegeneration of Alzheimer's disease (AD). Besides Aβ plaques and neuronal loss, microglia activation is also common in AD patient brains, suggesting its important role in the pathogenesis of AD. Although activation of microglia by Aβ plaques has been demonstrated, the mechanism underlying it is still largely unclear. Here, we found that TRPC6 has a crucial role in microglia activation by Aβ. Aβ up-regulates the level of TRPC6 via NF-κB in BV-2 microglia and increases the expression of pro-inflammatory factors and oxidative enzyme, COX-2. Knock-down of TRPC6 reduces the Aβ-induced expression of pro-inflammatory factors and COX-2 and the damage of hippocampus neurons. Furthermore, inhibition of COX-2 also protects hippocampus neurons from Aβ-induced inflammatory damage. Collectively, our studies suggest that Aβ increase the expression of TRPC6 via NF-κB in BV-2 microglia and promotes the production of COX-2, which induces hippocampus neuron damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app