Add like
Add dislike
Add to saved papers

The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes.

Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC50 ) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC50 values (mean ± SE) of 1.64 ± 0.66 μg/mL and 2.67 ± 1.18 μg/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app