Add like
Add dislike
Add to saved papers

Commissioning of applicator-guided stereotactic body radiation therapy boost with high-dose-rate brachytherapy for advanced cervical cancer using radiochromic film dosimetry.

Brachytherapy 2017 July
PURPOSE: To describe an EBT3 GAFCHROMIC film-based dosimetry method to be used in commissioning of a combined HDR brachytherapy (HDRB) and stereotactic body radiation therapy (SBRT) boost for treatment of advanced cervical cancer involving extensive residual disease after external beam treatment.

METHODS AND MATERIALS: A cube phantom was designed to firmly fit an intrauterine tandem applicator and EBT3 radiochromic film pieces. A high-risk clinical target volume (CTVHR, Total) was contoured with an extended arm at one side. The HDRB treatment was planned to cover the proximal CTVHR, Total with 7 Gy and the distal volume, referred to as CTVHR, Distal, was planned by SBRT for dose augmentation. After HDRB treatment delivery, SBRT treatment was delivered within 1 hour by image guidance using the applicator geometry. Intentional 1D and 2D misalignments were introduced to evaluate the effect on target volumes. In addition, effect of film reirradiation at different time gaps and dose levels was evaluated.

RESULTS: Film dosimetric accuracy, with up to 2 hours gap between irradiations, was shown to be unaffected. A 2%/2 mm gamma analysis between measured and planned doses showed agreement of >99%. Misalignments of more than 2 mm between applicator and SBRT isocenter resulted in suboptimal dose-volume histogram affecting mostly D98% and D90% of CTVHR, Distal.

CONCLUSIONS: Visualizing how target dose-volume metrics are affected by minor misalignments between SBRT and HDRB dose gradients, in light of achievable phantom-based experimental quality assurance level, encourages the clinical applicability of this technique. Radiochromic film was shown to be a valuable tool to commission procedures combining two different treatment planning systems and modalities with varying dose rates and energy ranges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app