Add like
Add dislike
Add to saved papers

Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties.

Novel antibacterial double-network (DN) hydrogels with superior mechanical and self-healing properties are developed via the UV-initiated copolymerization of polyacrylic acid (PAA)-grafted quaternized cellulose (QCE) and polyvinyl alcohol (PVA). The QCE functioned as an antibacterial agent, resulting in excellent antibacterial capability (antibacterial rate >93%). The hydrogels are thus protected from microbial attack in natural environments, prolonging their lifetime. The PVA functioned as a physical cross-linker, resulting in superior mechanical properties. At PVA and QCE contents of 8% and 1.5%, respectively, the strain and stress at break of hydrogel were 465.37% and 1.13MPa, respectively. The hydrogel maintained good self-healing properties owing to ionic bonding between the ferric ions and carboxylic groups, and hydrogen bonding between the PVA molecules. The hydrogel was responsive to pH; its water-holding ability could be controlled by changing the pH. The material is simply prepared and used. Hydrogels with such excellent properties could be applied in various biomedical fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app