JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Different Involvement of OAT in Renal Disposition of Oral Anticoagulants Rivaroxaban, Dabigatran, and Apixaban.

This study aimed to investigate the interactions of 3 anticoagulants, rivaroxaban, apixaban, and dabigatran, with 5 human solute carrier transporters, hOAT1, hOAT3, hOCT2, hOATP1B1, and hOATP1B3. Apixaban inhibited hOAT3, hOATP1B1, and hOATP1B3, and rivaroxaban inhibited hOAT3 and hOATP1B3, with IC50 values of >20 and >5 μM, respectively. The effect of dabigatran was negligible or very weak, so significant drug interactions at therapeutic doses are unlikely. Specific uptake of rivaroxaban was observed only in human and mouse OAT3-expressing cells. The Km for mouse Oat3 (mOat3) was 1.01 ± 0.70 μM. A defect in mOat3 reduced the kidney-to-plasma concentration ratio of rivaroxaban by 38% in mice. Probenecid treatment also reduced the kidney-to-plasma concentration ratio of rivaroxaban in rats by 73%. Neither mOat3 defect nor probenecid administration in rats reduced the renal clearance of rivaroxaban. The uptake of rivaroxaban by monkey kidney slices was temperature dependent and inhibited by probenecid but not by tetraethylammonium. Taken together, organic anion transporters, mainly OAT3, may mediate basolateral uptake of rivaroxaban in kidneys. hOAT3 could be an additional factor that differentiates the potential drug-drug interactions of the 3 anticoagulants in the urinary excretion process in clinical settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app