Add like
Add dislike
Add to saved papers

Continuous-flow injection microfluidic thrombin assays: The effect of binding kinetics on observed enzyme inhibition.

A microfluidic assay for monitoring the inhibition of thrombin peptidase activity was developed. The system, which utilised soluble reagents in continuous-flow injection mode, was configured so as to allow inhibitor titrations via gradient formation. This microfluidic continuous-flow injection titration assay (CFITA) enabled the potency of a set of small-molecule serine peptidase inhibitors (SPIs) to be evaluated. The results, compared to standard microtiter plate (MTP) data, indicated that a microfluidic CFITA provided an efficient and effective method for evaluating compound potency. Crucially, whereas for fast-acting compounds the rank order of potency between the CFITA and MTP methods was preserved, for slow-acting compounds the observed CFITA potencies were significantly lower. These results, in conjunction with data from computer simulations, clearly demonstrated that continuous-flow assays, and perhaps microfluidic assays in general, must take into account binding kinetics when used to assess reaction criteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app