Journal Article
Review
Add like
Add dislike
Add to saved papers

An update on nitric oxide and its benign role in plant responses under metal stress.

Pollution due to heavy metal(loid)s has become common menace across the globe. This is due to unprecedented frequent geological changes coupled with increasing anthropogenic activities, and population growth rate. Heavy metals (HMs) presence in the soil causes toxicity, and hampers plant growth and development. Plants being sessile are exposed to a variety of stress and/or a network of different kinds of stresses throughout their life cycle. To sense and transduce these stress signal, the signal reactive nitrogen species (RNS) particularly nitric oxide (NO) is an important secondary messenger next to only reactive oxygen species (ROS). Nitric oxide, a redox active molecule, colourless simple gas, and being a free radical (NO) has the potential in regulating multiple biological signaling responses in a variety of plants. Nitric oxide can counteract HMs-induced ROS, either by direct scavenging or by stimulating antioxidants defense team; therefore, it is also known as secondary antioxidant. The imbalance or cross talk of/between NO and ROS concentration along with antioxidant system leads to nitrosative and oxidative stress, or combination of both i.e., nitro-oxidative stress. Endogenous synthesis of NO also takes place in plants in the presence of heavy metals. During HM stress the different organelles of plant cells can biosynthesize NO in parallel to the ROS, such as in mitochondria, chloroplasts, peroxisomes, cytoplasm, endoplasmic reticulum and apoplasts. In view of the above, an effort has been made in the present review article to trace current knowledge and latest advances in chemical properties, biological roles, mechanism of NO action along with the physiological, biochemical, and molecular changes that occur in plants under different metal stress. A brief focus is also carried on ROS properties, roles, and their production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app