Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Sodium Salicylate Inhibits Urokinase Activity in MDA MB-231 Breast Cancer Cells.

INTRODUCTION: Sodium salicylate (NaS) is a derivate of acetylsalicylic acid or aspirin, used as a nonsteroidal anti-inflammatory drug for centuries, for its analgesic and anti-inflammatory effects. It was found to modulate different signaling pathways, in a cell-specific way. Here, we explore the effect of NaS on cell growth and urokinase activity in MDA MB-231 breast cancer cells.

MATERIALS AND METHODS: We analyzed the effect of NaS treatment on cell growth by flow cytometry and viability test. The transwell migration assay was used to study the migratory response of the cells. The gene expression was analyzed by qRT-PCR on RNA level and by Western blot analysis on protein level. Urokinase activity was assessed by caseinolysis.

RESULTS: Sublethal concentrations of NaS decreased cell growth and inhibited urokinase activity. The latter was a consequence of decrease in urokinase expression and increase in expression of its inhibitors. Analysis of signaling molecules revealed activation of transforming growth factor-β signaling, increase in master transcription factors for epithelial-mesenchymal transition and changes in integrin expression.

CONCLUSIONS: We propose that NaS causes partial cellular reprogramming through transforming growth factor-β signaling which, together with direct NaS influence, causes changes in expression in a set of genes involved in extracellular proteolysis. These data could be beneficial for the development of new therapeutic approaches in invasive breast cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app