Add like
Add dislike
Add to saved papers

CYP6B6 is involved in esfenvalerate detoxification in the polyphagous lepidopteran pest, Helicoverpa armigera.

The cotton bollworm, Helicoverpa armigera, is a polyphagous pest that has a strong capacity to evolve resistance against various classes of insecticides. Cytochrome P450 enzymes have been suspected involved in pyrethroid metabolism and resistance in this pest. However, how many and which P450s are involved in pyrethroid metabolism is largely unknown. In this study, CYP6B6 and NADPH-cytochrome P450 reductase (HaCPR) from H. armigera were successfully co-expressed in Escherichia coli. Incubation of esfenvalerate with the recombinant CYP6B6-HaCPR monooxygenase complex revealed that CYP6B6 was able to transform esfenvalerate into 4'-hydroxy fenvalerate. Kcat and Km values for the formation of 4'-hydroxyfenvalerate by the E. coli-produced CYP6B6 were determined to be 1.65±0.11min-1 and 4.10±0.84μM respectively. Our results demonstrate that CYP6B6 has the ability to hydroxylate esfenvalerate, thus plays a role in fenvalerate detoxification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app