Add like
Add dislike
Add to saved papers

Metabotropic glutamate receptor 5 mediates the suppressive effect of 6-OHDA-induced model of Parkinson's disease on liver cancer.

Numerous epidemiological studies suggested that there is a variable cancer risk in patients with Parkinson's disease (PD). However, the underlying mechanisms remain unclear. In the present study, the role of metabotropic glutamate receptor 5 (mGluR5) has been investigated in 6-hydroxydopamine (6-OHDA)-induced PD combined with liver cancer both in vitro and in vivo. We found that PD cellular model from 6-OHDA-lesioned MN9D cells suppressed the growth, migration, and invasion of Hepa1-6 cells via down-regulation of mGluR5-mediated ERK and Akt pathway. The application of 2-methyl-6-(phenylethyl)-pyridine and knockdown of mGluR5 further decreased the effect on Hepa-1-6 cells when co-cultured with conditioned media. The effect was increased by (S)-3,5-dihydroxyphenylglycine and overexpression of mGluR5. Moreover, more release of glutamate from 6-OHDA-lesioned MN9D cells suppressed mGluR5-mediated effect of Hepa1-6 cells. Application of riluzole eliminated the increased glutamate release induced by 6-OHDA in MN9D cells and aggravated the suppressive effect on Hepa-1-6 cells. In addition, the growth of implanted liver cancer was inhibited in 6-OHDA induced PD-like rats, and was associated with increased glutamate release in the serum and down-regulation of mGluR5 in tumor tissue. Collectively, these results indicate that selective antagonism of glutamate and mGluR5 has a potentially beneficial effect in both liver cancer and PD, and thus may provide more understanding for the clinical investigation and further an additional therapeutic target for these two diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app